Difference between revisions of "Applications/Miniconda"
m |
m (→Environment) |
||
(27 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
=== Application Details === | === Application Details === | ||
− | * Description: Miniconda | + | * Description: Miniconda Python is a high-level interpreted programming language for general-purpose programming, supported by a large number of libraries for many tasks which the user can install for customizing their environment |
* Versions: Miniconda (''lite version of anaconda'') | * Versions: Miniconda (''lite version of anaconda'') | ||
− | * Module name: python/anaconda/4.6/miniconda/3.7 ('''used for virtual environments only''') | + | * Module name: python/anaconda/4.6/miniconda/3.7 and '''python/anaconda/202111/3.9''' ('''used for virtual environments only''') |
* License: Free to use - [https://en.wikipedia.org/wiki/Python_Software_Foundation_License Python Software Foundation License] | * License: Free to use - [https://en.wikipedia.org/wiki/Python_Software_Foundation_License Python Software Foundation License] | ||
==Purpose== | ==Purpose== | ||
− | The purpose of the miniconda installation is that it is a basic Anaconda python install to allow | + | '''Important''': The purpose of the miniconda installation is that it is a basic Anaconda python install with a minimal set of modules to allow users virtual environments. This allows for custom virtual environments which can be quite small. |
===Definition=== | ===Definition=== | ||
− | A virtual environment is a named, isolated, working copy of Python | + | A virtual environment is a named, isolated, working copy of Python that maintains its own files, directories, and paths so that you can work with specific versions of libraries or Python itself without affecting other Python projects. Virtual environments make it easy to cleanly separate different projects and avoid problems with different dependencies and version requirements across components. |
The conda command is the preferred interface for managing installations and virtual environments with the Anaconda Python distribution. | The conda command is the preferred interface for managing installations and virtual environments with the Anaconda Python distribution. | ||
− | '''Note''' : It is very likely within the next HPC, all | + | '''Note''': It is very likely within the next HPC, all Python environments will be all virtual environments. |
+ | ==Environment== | ||
− | + | This provides a minimal Python configuration, as shown below: | |
− | * | + | * '''Important''' : For building an environment for [[TensorflowforGPU| AI models on a GPU]], otherwise continue below: |
− | |||
− | |||
− | |||
− | |||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | [user@login01 ~]$ module load python/anaconda/ | + | [user@login01 ~]$ module load python/anaconda/202111/3.9 |
[user@login01 ~]$ conda list | [user@login01 ~]$ conda list | ||
− | # packages in environment | + | # packages in the environment |
# | # | ||
# Name Version Build Channel | # Name Version Build Channel | ||
Line 72: | Line 69: | ||
===Creation of Virtual Environment Using Anaconda on Viper=== | ===Creation of Virtual Environment Using Anaconda on Viper=== | ||
− | To | + | * '''IMPORTANT''': If you see an error like this: |
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'. | ||
+ | To initialize your shell, run | ||
+ | |||
+ | $ conda init <SHELL_NAME> | ||
+ | |||
+ | Currently, supported shells are: | ||
+ | - bash | ||
+ | - fish | ||
+ | - tcsh | ||
+ | - xonsh | ||
+ | - zsh | ||
+ | - powershell | ||
+ | </pre> | ||
+ | |||
+ | You will need to type: | ||
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | $ conda init bash | ||
+ | </pre> | ||
− | + | To create a virtual environment using Anaconda 4.6 with Python version 3.7 on Viper, you would use the conda create command as follows: | |
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | [user@c001 ~ ]$ module load python/anaconda/ | + | [user@c001 ~ ]$ module load python/anaconda/202111/3.9 |
− | [user@c001 ~ ]$ conda create –n | + | [user@c001 ~ ]$ conda create –n myenv1 |
</pre> | </pre> | ||
− | The above command creates a new virtual environment called | + | The above command creates a new virtual environment called myenv1. |
To activate this virtual environment you would issue the following command: | To activate this virtual environment you would issue the following command: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | [user@c001 ~ ]$ conda activate | + | [user@c001 ~ ]$ conda activate myenv1 |
</pre> | </pre> | ||
− | On successful activation of this virtual environment you should the name of your environment in front of your login prompt like so: | + | |
+ | |||
+ | On successful activation of this virtual environment, you should the name of your environment in front of your login prompt like so: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | ( | + | (myenv1) [user@c001 ~ ]$ |
</pre> | </pre> | ||
+ | |||
To exit the virtual environment use the key combination '''ctrl + d''' or 'conda deactivate'. | To exit the virtual environment use the key combination '''ctrl + d''' or 'conda deactivate'. | ||
===Adding packages=== | ===Adding packages=== | ||
− | Once you have installed Miniconda and | + | Once you have installed Miniconda and set up your environment to access it, you can then add whatever packages you wish to the installation using the conda install ... command. For example: |
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | ( | + | (myenv1) user@c001:~> conda install numpy |
Fetching package metadata ............... | Fetching package metadata ............... | ||
− | Solving package specifications: | + | Solving package specifications: |
Package plan for installation in environment /home/t01/t01/user/miniconda3: | Package plan for installation in environment /home/t01/t01/user/miniconda3: | ||
Line 126: | Line 147: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | ( | + | (myenv1) [user@c001]$ conda install -c conda-forge pygobject |
</pre> | </pre> | ||
Line 132: | Line 153: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | [user@c001]$ conda create -n | + | [user@c001]$ conda create -n myenv2 scipy=0.15.0 |
</pre> | </pre> | ||
− | * or even defining the | + | * or even defining the Python version at 3.4 |
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
Line 154: | Line 175: | ||
[user@c001]$ conda remove --name EnvironmentNAME --all | [user@c001]$ conda remove --name EnvironmentNAME --all | ||
</pre> | </pre> | ||
+ | |||
+ | |||
+ | |||
+ | ===Using your environment in an interactive session=== | ||
+ | |||
+ | To test and debug your program it is recommended to use an interactive session, these are also useful for programs that have short runtimes too. | ||
+ | |||
+ | * If you want a CPU-based node to use the commands: | ||
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | [user@login01]$ interactive | ||
+ | [user@c001]$ conda activate pytorch01 | ||
+ | {pytorch01} [user@c001]$ python mypytorchprogram.py | ||
+ | </pre> | ||
+ | |||
+ | * If you want a GPU-based node instead use the commands: | ||
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | [user@login01]$ interactive -pgpu | ||
+ | [user@gpu02]$ conda activate pytorch01 | ||
+ | {pytorch01} [user@gpu02]$ python mypytorchprogram.py | ||
+ | </pre> | ||
+ | |||
+ | If you see an error like this: | ||
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'. | ||
+ | To initialize your shell, run | ||
+ | |||
+ | $ conda init <SHELL_NAME> | ||
+ | |||
+ | Currently, supported shells are: | ||
+ | - bash | ||
+ | - fish | ||
+ | - tcsh | ||
+ | - xonsh | ||
+ | - zsh | ||
+ | - powershell | ||
+ | </pre> | ||
+ | |||
+ | You will need to type: | ||
+ | |||
+ | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
+ | $ conda init bash | ||
+ | </pre> | ||
+ | |||
+ | then exit the terminal you're in and restart the session to read the new conda settings. | ||
Line 159: | Line 227: | ||
===Using SLURM with a virtual environment=== | ===Using SLURM with a virtual environment=== | ||
− | Here | + | Here are two examples of SLURM scripts which are using a Python virtual environment |
− | * '''substitute''' ''/home/user'' for your own path | + | * '''substitute''' ''/home/<user>'' for your own path |
====Compute Node Example==== | ====Compute Node Example==== | ||
Line 171: | Line 239: | ||
#SBATCH -N 1 | #SBATCH -N 1 | ||
#SBATCH --ntasks-per-node 12 | #SBATCH --ntasks-per-node 12 | ||
− | #SBATCH -D /home/user/ | + | #SBATCH -D /home/<user>/ |
#SBATCH -o debug.out | #SBATCH -o debug.out | ||
#SBATCH -e debug.err | #SBATCH -e debug.err | ||
#SBATCH -p compute | #SBATCH -p compute | ||
#SBATCH -t 00:10:00 | #SBATCH -t 00:10:00 | ||
+ | #SBATCH --mail-user= your email address here | ||
echo $SLURM_JOB_NODELIST | echo $SLURM_JOB_NODELIST | ||
module purge | module purge | ||
− | module load python/anaconda/ | + | module load python/anaconda/20220712/3.9 |
− | source activate /home/user/.conda/envs/bioinformatics1 | + | source activate /home/<user>/.conda/envs/bioinformatics1 |
+ | export PATH=/home/<user>/.conda/envs/bioinformatics/bin:${PATH} | ||
python /home/user/TATT-CPU.py | python /home/user/TATT-CPU.py | ||
Line 196: | Line 266: | ||
#SBATCH -N 1 | #SBATCH -N 1 | ||
#SBATCH --ntasks-per-node 1 | #SBATCH --ntasks-per-node 1 | ||
− | #SBATCH -D /home/user/ | + | #SBATCH -D /home/<user>/ |
#SBATCH -o debug.out | #SBATCH -o debug.out | ||
#SBATCH -e debug.err | #SBATCH -e debug.err | ||
− | #SBATCH --gres=gpu | + | #SBATCH --gres=gpu |
#SBATCH -p gpu | #SBATCH -p gpu | ||
#SBATCH -t 00:10:00 | #SBATCH -t 00:10:00 | ||
+ | #SBATCH --mail-user= your email address here | ||
echo $SLURM_JOB_NODELIST | echo $SLURM_JOB_NODELIST | ||
Line 207: | Line 278: | ||
module purge | module purge | ||
module load gcc/5.2.0 | module load gcc/5.2.0 | ||
− | module load python/anaconda/ | + | module load python/anaconda/20220712/3.9 |
− | module load cuda/ | + | module load cuda/11.5.0 |
− | source activate /home/user/.conda/envs/ | + | source activate /home/<user>/.conda/envs/bioinformatics1 |
+ | export PATH=/home/<user>/.conda/envs/bioinformatics/bin:${PATH} | ||
python /home/user/TATT-GPU.py | python /home/user/TATT-GPU.py | ||
Line 224: | Line 296: | ||
</pre> | </pre> | ||
− | + | The above command is creating a virtual environment from the YAML called myenv.yml. Below is a copy of the markup in the file called "myenv.yml". | |
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
Line 283: | Line 355: | ||
===Exporting a Virtual Environment in Anaconda to a YAML File=== | ===Exporting a Virtual Environment in Anaconda to a YAML File=== | ||
− | + | Export a virtual environment to a YAML file so that you or another researcher can replicate your environment using Anaconda can be done using the following steps: | |
* Activate the Virtual environment you wish to export: | * Activate the Virtual environment you wish to export: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | [user@c001 ~ ]$ source activate | + | [user@c001 ~ ]$ source activate myenv1 |
</pre> | </pre> | ||
Line 294: | Line 366: | ||
<pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | <pre style="background-color: #000000; color: white; border: 2px solid black; font-family: monospace, sans-serif;"> | ||
− | { | + | {myenv1} [user@c001 ~ ]$ conda env export > myenv1.yml |
</pre> | </pre> | ||
Line 305: | Line 377: | ||
* Ignore the virtual environment directories from repositories (''eg GitHub, GitLab''). For example, '''.gitignore''' them. | * Ignore the virtual environment directories from repositories (''eg GitHub, GitLab''). For example, '''.gitignore''' them. | ||
− | == | + | == Next Steps == |
* [[Programming/Python|Python programming]] | * [[Programming/Python|Python programming]] | ||
* [[Applications/Anaconda|Anaconda python]] | * [[Applications/Anaconda|Anaconda python]] | ||
− | + | {{Modulepagenav}} | |
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 09:08, 21 April 2023
Contents
- 1 Application Details
- 2 Purpose
- 3 Environment
- 3.1 Creation of Virtual Environment Using Anaconda on Viper
- 3.2 Adding packages
- 3.3 Clone an environment
- 3.4 Removing an environment
- 3.5 Using your environment in an interactive session
- 3.6 Using SLURM with a virtual environment
- 3.7 Creation of a Virtual Environment in Anaconda Using a YAML File
- 3.8 Exporting a Virtual Environment in Anaconda to a YAML File
- 4 Virtual Environment Tips
- 5 Next Steps
Application Details
- Description: Miniconda Python is a high-level interpreted programming language for general-purpose programming, supported by a large number of libraries for many tasks which the user can install for customizing their environment
- Versions: Miniconda (lite version of anaconda)
- Module name: python/anaconda/4.6/miniconda/3.7 and python/anaconda/202111/3.9 (used for virtual environments only)
- License: Free to use - Python Software Foundation License
Purpose
Important: The purpose of the miniconda installation is that it is a basic Anaconda python install with a minimal set of modules to allow users virtual environments. This allows for custom virtual environments which can be quite small.
Definition
A virtual environment is a named, isolated, working copy of Python that maintains its own files, directories, and paths so that you can work with specific versions of libraries or Python itself without affecting other Python projects. Virtual environments make it easy to cleanly separate different projects and avoid problems with different dependencies and version requirements across components.
The conda command is the preferred interface for managing installations and virtual environments with the Anaconda Python distribution.
Note: It is very likely within the next HPC, all Python environments will be all virtual environments.
Environment
This provides a minimal Python configuration, as shown below:
- Important : For building an environment for AI models on a GPU, otherwise continue below:
[user@login01 ~]$ module load python/anaconda/202111/3.9 [user@login01 ~]$ conda list # packages in the environment # # Name Version Build Channel asn1crypto 0.24.0 py37_0 ca-certificates 2019.1.23 0 certifi 2019.3.9 py37_0 cffi 1.12.2 py37h2e261b9_1 chardet 3.0.4 py37_1 conda 4.6.14 py37_0 cryptography 2.6.1 py37h1ba5d50_0 idna 2.8 py37_0 libedit 3.1.20181209 hc058e9b_0 libffi 3.2.1 hd88cf55_4 libgcc-ng 8.2.0 hdf63c60_1 libstdcxx-ng 8.2.0 hdf63c60_1 ncurses 6.1 he6710b0_1 openssl 1.1.1b h7b6447c_1 pip 19.0.3 py37_0 pycosat 0.6.3 py37h14c3975_0 pycparser 2.19 py37_0 pyopenssl 19.0.0 py37_0 pysocks 1.6.8 py37_0 python 3.7.3 h0371630_0 readline 7.0 h7b6447c_5 requests 2.21.0 py37_0 ruamel_yaml 0.15.46 py37h14c3975_0 setuptools 41.0.0 py37_0 six 1.12.0 py37_0 sqlite 3.27.2 h7b6447c_0 tk 8.6.8 hbc83047_0 urllib3 1.24.1 py37_0 wheel 0.33.1 py37_0 xz 5.2.4 h14c3975_4 yaml 0.1.7 had09818_2 zlib 1.2.11 h7b6447c_3
Creation of Virtual Environment Using Anaconda on Viper
- IMPORTANT: If you see an error like this:
CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'. To initialize your shell, run $ conda init <SHELL_NAME> Currently, supported shells are: - bash - fish - tcsh - xonsh - zsh - powershell
You will need to type:
$ conda init bash
To create a virtual environment using Anaconda 4.6 with Python version 3.7 on Viper, you would use the conda create command as follows:
[user@c001 ~ ]$ module load python/anaconda/202111/3.9 [user@c001 ~ ]$ conda create –n myenv1
The above command creates a new virtual environment called myenv1.
To activate this virtual environment you would issue the following command:
[user@c001 ~ ]$ conda activate myenv1
On successful activation of this virtual environment, you should the name of your environment in front of your login prompt like so:
(myenv1) [user@c001 ~ ]$
To exit the virtual environment use the key combination ctrl + d or 'conda deactivate'.
Adding packages
Once you have installed Miniconda and set up your environment to access it, you can then add whatever packages you wish to the installation using the conda install ... command. For example:
(myenv1) user@c001:~> conda install numpy Fetching package metadata ............... Solving package specifications: Package plan for installation in environment /home/t01/t01/user/miniconda3: The following NEW packages will be INSTALLED: blas: 1.1-openblas conda-forge libgfortran: 3.0.0-1 numpy: 1.14.0-py36_blas_openblas_200 conda-forge [blas_openblas] openblas: 0.2.20-7 conda-forge The following packages will be UPDATED: conda: 4.3.31-py36_0 --> 4.3.33-py36_0 conda-forge The following packages will be SUPERSEDED by a higher-priority channel: conda-env: 2.6.0-h36134e3_1 --> 2.6.0-0 conda-forge Proceed ([y]/n)? y
- Please note, for some package installations it may also be necessary to specify a channel such as conda-forge. For example, the following command installs the pygobject module.
(myenv1) [user@c001]$ conda install -c conda-forge pygobject
- To create an environment with a specific version of a package:
[user@c001]$ conda create -n myenv2 scipy=0.15.0
- or even defining the Python version at 3.4
[user@c001]$ conda create -n myenv python=3.4 scipy=0.15.0 astroid babel
Clone an environment
[user@c001]$ conda create -n OriginalENV --clone NewENV
Removing an environment
To delete a conda environment, enter the following, where yourenvname is the name of the environment you wish to delete.
[user@c001]$ conda remove --name EnvironmentNAME --all
Using your environment in an interactive session
To test and debug your program it is recommended to use an interactive session, these are also useful for programs that have short runtimes too.
- If you want a CPU-based node to use the commands:
[user@login01]$ interactive [user@c001]$ conda activate pytorch01 {pytorch01} [user@c001]$ python mypytorchprogram.py
- If you want a GPU-based node instead use the commands:
[user@login01]$ interactive -pgpu [user@gpu02]$ conda activate pytorch01 {pytorch01} [user@gpu02]$ python mypytorchprogram.py
If you see an error like this:
CommandNotFoundError: Your shell has not been properly configured to use 'conda activate'. To initialize your shell, run $ conda init <SHELL_NAME> Currently, supported shells are: - bash - fish - tcsh - xonsh - zsh - powershell
You will need to type:
$ conda init bash
then exit the terminal you're in and restart the session to read the new conda settings.
Using SLURM with a virtual environment
Here are two examples of SLURM scripts which are using a Python virtual environment
- substitute /home/<user> for your own path
Compute Node Example
#!/bin/bash #SBATCH -J BUILDCPU #SBATCH -N 1 #SBATCH --ntasks-per-node 12 #SBATCH -D /home/<user>/ #SBATCH -o debug.out #SBATCH -e debug.err #SBATCH -p compute #SBATCH -t 00:10:00 #SBATCH --mail-user= your email address here echo $SLURM_JOB_NODELIST module purge module load python/anaconda/20220712/3.9 source activate /home/<user>/.conda/envs/bioinformatics1 export PATH=/home/<user>/.conda/envs/bioinformatics/bin:${PATH} python /home/user/TATT-CPU.py
GPU Node Example
#!/bin/bash #SBATCH -J BIDGPU #SBATCH -N 1 #SBATCH --ntasks-per-node 1 #SBATCH -D /home/<user>/ #SBATCH -o debug.out #SBATCH -e debug.err #SBATCH --gres=gpu #SBATCH -p gpu #SBATCH -t 00:10:00 #SBATCH --mail-user= your email address here echo $SLURM_JOB_NODELIST module purge module load gcc/5.2.0 module load python/anaconda/20220712/3.9 module load cuda/11.5.0 source activate /home/<user>/.conda/envs/bioinformatics1 export PATH=/home/<user>/.conda/envs/bioinformatics/bin:${PATH} python /home/user/TATT-GPU.py
Creation of a Virtual Environment in Anaconda Using a YAML File
To create a virtual environment from a YAML file you would issue the following command:
[user@c001 ~ ]$ conda env create -f myenv.yml
The above command is creating a virtual environment from the YAML called myenv.yml. Below is a copy of the markup in the file called "myenv.yml".
name: ytenv channels: - defaults dependencies: - ca-certificates=2017.08.26=h1d4fec5_0 - certifi=2018.1.18=py27_0 - intel-openmp=2018.0.0=hc7b2577_8 - libedit=3.1=heed3624_0 - libffi=3.2.1=hd88cf55_4 - libgcc-ng=7.2.0=h7cc24e2_2 - libgfortran-ng=7.2.0=h9f7466a_2 - libstdcxx-ng=7.2.0=h7a57d05_2 - mkl=2018.0.1=h19d6760_4 - ncurses=6.0=h9df7e31_2 - numpy=1.14.0=py27h3dfced4_1 - openssl=1.0.2n=hb7f436b_0 - pip=9.0.1=py27ha730c48_4 - python=2.7.14=h1571d57_29 - readline=7.0=ha6073c6_4 - setuptools=38.4.0=py27_0 - sqlite=3.22.0=h1bed415_0 - tk=8.6.7=hc745277_3 - wheel=0.30.0=py27h2bc6bb2_1 - zlib=1.2.11=ha838bed_2 - pip: - backports.functools-lru-cache==1.5 - backports.shutil-get-terminal-size==1.0.0 - cycler==0.10.0 - decorator==4.2.1 - enum34==1.1.6 - h5py==2.7.1 - ipython==5.5.0 - ipython-genutils==0.2.0 - matplotlib==2.1.2 - mpmath==1.0.0 - pathlib2==2.3.0 - pexpect==4.4.0 - pickleshare==0.7.4 - prompt-toolkit==1.0.15 - ptyprocess==0.5.2 - pygments==2.2.0 - pyparsing==2.2.0 - python-dateutil==2.6.1 - pytz==2018.3 - scandir==1.7 - simplegeneric==0.8.1 - six==1.11.0 - subprocess32==3.2.7 - sympy==1.1.1 - traitlets==4.3.2 - wcwidth==0.1.7 - yt==3.4.1
Exporting a Virtual Environment in Anaconda to a YAML File
Export a virtual environment to a YAML file so that you or another researcher can replicate your environment using Anaconda can be done using the following steps:
- Activate the Virtual environment you wish to export:
[user@c001 ~ ]$ source activate myenv1
- Export your active virtual environment using the following command:
{myenv1} [user@c001 ~ ]$ conda env export > myenv1.yml
Virtual Environment Tips
- Avoid using pip by itself. Using python -m pip will always guarantee you are using the pip associated with that specific python being called, instead of potentially calling a pip associated with a different python.
- I recommend using a separate virtual environment for each project.
- You should never copy or move around virtual environments. Always create new ones, or use YAML exports.
- Ignore the virtual environment directories from repositories (eg GitHub, GitLab). For example, .gitignore them.