Difference between revisions of "Applications/guppy"

From HPC
Jump to: navigation , search
m
Line 30: Line 30:
  
 
module purge
 
module purge
module load cuda/10.1.168
+
module load cuda/11.5.0
 
module load guppy/gpu/3.1.5
 
module load guppy/gpu/3.1.5
  

Revision as of 13:53, 26 October 2021

Application Details

  • Description: Local accelerated basecalling for Nanopore data.
  • Version: guppy 3.1.5 and 4.0.14
  • Modules: guppy/cpu/3.1.5 (CPU), guppy/gpu/3.1.5 (GPU), guppy/cpu/4.0.14 (CPU), guppy/gpu/4.0.14 (GPU)
  • Licence: Free, open-source

Usage Examples

Using the GPU as accelerators will make the analysis considerably faster (on large data sets). For small runs the CPU version is recommended and probably faster by removing the GPU overhead.

Important : guppy/gpu (GPU version) requires compute level of six or above, see examples below.

Batch example

This uses 2 GPUs presently on GPU05 (compute level is high than 6) which is required by guppy's minimum requirement.

#!/bin/bash
#SBATCH -J guppy.job
#SBATCH --exclusive
#SBATCH -o gpu05.%j.out
#SBATCH -e gpu05.%j.err
#SBATCH -p gpu05
#SBATCH --gres=gpu:tesla:2
#SBATCH --exclusive


module purge
module load cuda/11.5.0
module load guppy/gpu/3.1.5


guppy_basecaller --input_path /home/user/fast5 --save_path /home/user/guppy --flowcell FLO-MIN106 --kit SQK-RPB004 --min_qscore 7 --qscore_filtering -x cuda:0 cuda:1

Compute capability

For applications that require this information:

  • K40m is 3.5
  • P100 is 6.0


Further Information

Navigation